Tetrahedron Letters No.41, p. 4095, 1967. Pergamon Press Ltd. Printed in Great Britain.

ON THE QUESTION OF THE STRUCTURES OF GB1, GB1a AND GB2, A NEW GROUP OF BISFLAVONOIDS REMARKS ON THE PUBLICATION BY A. PELTER

Hans Grisebach

Chair of Plant Biochemistry, University of Freiburg i.Br., Germany (Received in Germany 30 June 1967)

In his paper on the structure of bisflavonoids from the heartwood of <u>Garcinia</u> <u>buchananii</u>, Pelter (1) has discussed the possibility that an 1,2-aryl shift could be involved in the dimerisation of naringenin. He cites a number of chemical analogies for such a rearrangement, but has apparently overlooked the fact that we have proved that such an aryl shift does actually occur in plants during the biosynthesis of 5,7-dihydroxy-4'-methoxyisoflavone (biochanin A) from (-)2Snaringenin(2) and that flavanonols are not intermediates in this rearrangement(3).

In the light of our results, the structures Ba-c proposed by Pelter could be biogenetically derived from the following reaction sequence: oxidative rearrangement of naringenin, resulting in the formation of a transient carbonium ion at C-2 which could subsequently undergo nucleophilic attack by the phloroglucinol molety of a second naringenin molecule.

It should also be mentioned that a decision between structures I and II should be possible by a tracer experiment with phenylalanine-2-¹⁴C. In the case of structure I, the p-hydroxybenzoic acid obtained by degradation should have no radioactivity, whereas in the case of structure II, about 50 % of the ¹⁴C should be located in the carboxyl group of this acid (4). It might of course be difficult to carry out such an experiment with heartwood constituents.

References

1. A. Pelter, <u>Tetrahedron Letters</u>, 1767 (1967).

- 2. L. Patschke, W. Barz and H. Grisebach, Z. Naturforschg. 21b, 201 (1966)
- 3. W. Barz and H. Grisebach, Z. Naturforschg. 21b, 47 (1966).
- 4. H. Grisebach and N. Doerr, Z. Naturforschg. 15b, 284 (1960).

4095